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Abstract 

The treatment of turbulence effects on transonic shock/turbulent boundary 
layer interaction is addressed within the context of a triple deck approach valid 
for arbitrary practical Reynolds numbers lo3 5 Re6* 5 The modeling of  
the eddy viscosity and basic turbulent boundary profile effects in each deck 
is examined in detail using the Law of the Wall/Law of  the Wake concepts as the foun- 
dation. Results of parametric studies showing how each of these turbulence model 
aspects influences typical interactive zone property distributions (wall pressure, 
displacement thickness and local skin friction) are presented and discussed. 

1. INTRODUCTION 

Although a number of both asymptotic1 and nonasymptotic2 triple deck theories 
of non-separating transonic shock/turbulent boundary layer interaction have been 
advanced, none has fully addressed in a unified way all aspects of turbulence-effect 
modeling in the problem. Indeed, certain such theories have never explicitly 
addressed the eddy viscosity aspect of the problem at all but have merely used 
a crude empirical power law profile for the incoming boundary layer as the sole 
account of the turbulent aspect nature of the flow3; others have ignored entirely 
the important influence of the velocity-defect region4. 
to remedy these deficiencies in treating turbulent interactions by providing 
a complete and unified analysis of the turbulence modeling within the context 
of the eddy viscosity approach combined with Law of the Wall/Law of the Wake 
concepts. Since it has proved applicable to an extremely wide range of Reynolds 
numbers5 and highly adaptable to practical flow field calculation schemes6 9 5 

we adopt for this purpose the non-asymptotic triple deck theory originated by 
Lighthil19 for quasi-laminar flow and later refined by Inger for fully turbulent 

The present paper seeks 

, 

f low2. 

2. RATIONALE OF THE PRESENT TRIPLE DECK APPROACH 

Since it is the foundational framework used to address the various turbulence- 
modeling issues, a brief outline of the triple-deck approach and the advantages 
of its non-asymptotic version will first be given. We consider small disturbances 
of an arbitrary incoming turbulent boundary layer due to a weak external shock 
and examine the detailed perturbation field within the layer. At high Reynolds 
numbers it has been establishedlO*ll that the local interaction disturbance field 
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in the noighborhood of the impinging shock organizes itself into three basic 
layered-regions or "decks" (Figure 1): 1) an outer region of potential inviscid 
flow above the boundary layer, which contains the incident shock and interactive 
wave systems; 2) an intermediate deck of rotational-inviscid disturbance flow occupy- 
i n g  the outer 90% or more of the incoming boundary layer thickness; 3 )  an inner 
sublayer adjacent to the wall containing both turbulent and laminar shear stress 
disturbances, which accounts for the interactive skin friction perturbations 
(and hence any possible incipient separation) plus most of the upstream influence 
of the interaction. The "forcing function" of the problem here is thus impressed 
by the outer deck upon the boundary layer; the middle deck couples this to the 
response of the inner deck but in so doing can itself modify the disturbance 
field to some extent, while the slow viscous flow in the thin inner deck reacts 
very strongly to the pressure gradient disturbances imposed by these overlying 
decks. This general triple deck structure is supported by a large body of experi- 
mental and theoretical studies. l1 

Concerning the importance of the inner shear disturbance deck and the accuracy 
of deliberately using a non-asymptotic treatment of the details within the boundary 
layer, we note that while asymptotic (Reg + a) theory predicts an exponentially-small 
thickness and displacement effect contribution of the inner deck, this is not 
apparently true at ordinary Reynolds numbers, where many analytic and experimental 
studies have firmly established that this deck, although indeed very thin, still 
contributes significantly to the overlying interaction and its displacement thickness 
growth.2 Thus we take the point of view here that the inner deck is in fact 
significant at the Reynolds numbers of practical interest. Moreover, it contains 
- all of the skin friction and incipient separation effects in the interaction, 
which alone are sufficient reasons to examine it in detail. It is further pointed 
out that application of asymptotic theory results (no matter how rigorous in 
this limit) to ordinary Reynolds numbers is itself an approximation which may 
be no more accurate (indeed perhaps less s o )  than a physically well constructed 
nonasymptotic theory. Direct extrapolated-asymptotic versus non-asymptotic theory 
comparisons have definitely shown this to be the case for laminar flows (especially 
as regards the skin friction aspect) and the situation has been shown to be possibly 
even worse in turbulent flow. For example, the asymptotic first-order theory 
formally excludes both the streamwise interactive pressure gradient effect on 
the shear disturbance deck and both the normal pressure gradient and so-called 
''streamline divergence'' effects on the middle deck; however, physical considerations 
plus experimental observations and recent comparative numerical studies12 suggest 
that these effects may in fact be significant at practical Reynolds numbers and 
should not be neglected. Of course, second-order asymptotic corrections can 
be devised to redress this difficulty but, as Regab and Neyfeh13 have shown, 
run the risk of breaking down even worse when extrapolated to ordinary Reynolds 
numbers. In the present work, we avoid these problems by using a deliberately 
nonasymptotic triple-deck model appropriate to realistic Reynolds numbers that 
includes the inner deck pressure gradient terms plus the middle deck ap/ay and 
streamline divergence effects, along with some simplifying approximations that 
render the resulting theory tractible from an engineering standpoint. 

3 .  TURBULENCE MODELING ACROSS THE INTERACTION ZONE 

3.1)  The Outer Deck Flow 

Excluding any freestream turbulence, there is no explicit turbulence modeling 
needed in this upper region of potential inviscid motion; the influence of the 
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turbulent nature of the flow is felt only indirectly through the displacement 
effect from the underlying decks. The latter is introduced by the physical coupling 
conditions that both v'/Uoe and p'be continuous with their middle deck counterparts 
along y = S o .  

3 . 2 )  Turbulence Effects in the Middle Deck 

Our analysis of this layer rests on the key simplifying assumption that for 
non-separating interactions the turbulent Reynolds shear stress changes ar small 
and have a negligible back effect on the mean flow properties along the interaction 
zone; hence this stress can be taken to be "frozen" along each streamline at 
its appropriate value in the undisturbed incoming boundary layer. This approxima- 
tion, likewise adopted by a number of earlier investigators with good results, 
is supported not only by asymptotic analysis but especially by the results of 
Rose's detailed experimental studies14 of a non-separating shock turbulent boundary 
layer interaction which showed that, over the short-ranged interaction length 
straddling the shock, the pressure gradient and inertial forces outside a thin 
layer near the wall are at least an order of magnitude larger than the corresponding 
changes in Reynolds stress. Furthermore, there is a substantial body of related 
experimental results on turbulent boundary layer response to various kinds of 
sudden perturbations and rapid pressure gradients which also strongly support 
this view2. 
flows, significant local Reynolds shear stress disturbances are essentially confined 
to a thin sublayer within the Law of the Wall region (see below) where the turbulence 
rapidly adjusts to the local pressure gradient, while outside this region where 
the Law of the Wake prevails the turbulent stresses respond very slowly and remain 
nearly frozen at their initial values far out of the local equilibrium with the 
wall stress. 

These studies unanimously confirm that, at least for non-separating 

Confining attention, then, to the short range local shock interaction zone 
where the aforementioned "frozen turbulence" approximation is applicable, the 
disturbance field caused by a weak shock is one of small rotational inviscid 
perturbation of the incoming non-uniform turbulent boundary layer profile Mo(y) 
governed by the equations 

as a result of the combined particle-isentropic continuity, x-momentum and energy 
conservation statements. It is noted that, consistent with the assumed short 
range character of the interaction, the streamwise variation of the undisturbed 
turbulent boundary layer properties that would occur over this range are neglected, 
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taking Uo(y), po(y) and Mo(y) to be arbitrary functions of y only with 6,, 
and 7 as constants. Note that E q .  ( 3 )  is a generalization of Lighthills'well-known 

WO 
pressure perturbation equation for non-uniform flows9 which includes a non-linear 
correction term for possible transonic effects within the boundary layer including 
the diffracted impinging shock above the sonic level of the incoming boundary-layer 
profile. 
provide an account of lateral pressure gradients across the interaction boundary 
layer. 

6,* 

Eqs. ( 1 ) - ( 3 )  apply to a wide range of incoming boundary-layer profiles and 

The incoming undisturbed turbulent boundary layer is assumed to be two-dimen- 
sional in the x-direction and to possess the classical Law of the Wall/Law of 
the Wake structure. 
for the resulting velocity profile combined with an adiabatic wall reference 
temperature method correction for compressibility*, allowing arbitrary non-equilibri- 
um values of its shape factor H.. Thus if we let A be Coles' (incompressible) Wake 
Function, = y/6, and denote for convenience R = .41 Re6,/[(1 + T)(T~/T,>~+W] with 
w = .76 and 7 = 1 . 4  for a perfect gas, then the compressible form of Walz s coniposite 
profile may be written: 

It is modeled by Walz's15 composite analytical expression 

~ 

-= uo 1-t- ,/%) -- [ &) q*( l -q)  - 2n + 2n q 2 . (3-2rl) 

e .41 'e (4) 

+an (B) - (. 215+. 655Rn) e 
I 

I subject to the following condition linking 'II to Cfo and Re6,*: 

E q s .  ( 4 )  and (5) have the following desirable properties: 
is dominated by a Law of the Wake behavior which correctly satisfies Goth the 
outer limit conditions Uo/U, + 1 - and dUo/dy -+ 0 and q = l;(b) for very small 
values, Uo assumes a Law of the Wall-type behavior consisting of a logarithmic 
term that is exponentially damped out into a linear laminar sublayer profile 
U/Ue = RI;I as r] + 0; (c) E q .  ( 4 )  may be differentiated w.r.t. q to yield an analyti- 
csl expression for dUo/dy also, which proves advantageous in solving the middle 
and inner deck interaction problems. Typical non-dimensional turbulent boundary 
layer velocity profiles that result from E q s .  ( 4 )  and (5) are illustrated in 
Fig. 2. It is evident from this plot that as Hi1 + 1 the outer (wake) part 
of the profile vanishes leaving essentially a uniform (and inviscid-like) profile 
except for a very thin sublayer adjacent to the wall. 

(a) for q > . l o ,  Uo/Ue 

- 
*Under the transonic Mach number/adiabatic wall conditions considered here, this 
gives a good engineering approximation to the compresibility effects while much 
simpler to implement than the more exact Van Driest transformation16 approach. 
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The defining integral relations for Si* and Bi*yields the following relation- 
ship that links the wake parameter to the resulting compressible shape factor 
Hi - (Si*/ei*) : 

Hi - 1 I,- 
( 6 )  

Equations ( 4 ) - ( 6 )  provide a very general and accurate model of the profile in 
terms of three important physical quantities: the shock strength (Mel), the 
displacement thickness ReynQlds number Re6* and the Wake function A that reflects 
the prior upstream history of the incoming boundary layer including possible 
nonequilibrium pressure gradient and surface mass transfer effects. The resulting 
relationship of the incompressible shape factor Hi, to the Wake Function as a 
function of Reynolds number for a typical Mi = 1.20 transonic flow is illustrated 
in Fig. 3 .  It is seen from this Figure that Hi1 approaches a limiting value 
of unity as ReS + a 
function values larger than zero (slightly favorable and adverse pressure gradient 
upstream flow histories). 

but that this approach is very gradual, especially for wake 

With these parameters prescribed, the aforementioned equations may be solved 
simultaneously for the attendant skin friction Cf, the value of R and, if desired, 
the Hi appropriate to these flow conditions. Using the adiabatic temperature- 
velocity relationship. 

the associated Mach number profile Mo(y) = Uo(rRTo) 
needed for the middle deck interaction solution may then be determined. 

and its derivative that are 

3 . 3 )  Turbulent Shear Stress Disturbances Along the Inner Deck 

This very thin layer lies well within the Law of the Wall region of the incoming 
turbulent boundary-layer profile. 
by further neglecting the turbulent stresses altogether and considering only 
the laminar sublayer effect; while this greatly simplifies the problem and yields 
an elegant analytical solution, the results can be significantly in error at 
high Reynolds numbers and cannot explain (and indeed conflicts with) the ultimate 
asymptotic behavior pertaining to the ReS + a limit. The present theory remedies 
this by extending Lighthill's approach to include the entire Law of the Wall 
region turbulent stress-effects; the resulting general shear-disturbance sublayer 
theory provides a non-asymptotic treatment which encompasses the complete range 
of Reynolds numbers. It is important to note in this connection that our consider- 
ation of the entire Law of the Wall combined with the use of the effective inviscid 
wall concept to treat the inner deck displacement effect eliminates the need 
for the "blending layer" that is otherwise required to match the disturbance 
field in the laminar sublayer region with the middle inviscid deck; except for 
higher order derivative aspects of asymptotic matching, our inner solution 

The original work of Lighthil19 treated it 
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effectively includes this blending function since it imposes a boundary condition 
of vanishing total (laminar plus turbulent) shear disturbance at the outer edge 
of the deck. 

To facilitate a tractable theory, we introduce the following simplifying 
assumptions: (a) The incoming boundary-layer Law of the Wall region ischaraderized 
by a constant total (laminar plus turbulent eddy) shear stress and a%nDrieseCebeci 
type of damped eddy viscosity model. This model is known to be a good one for 
a wide range of upstream non-separating boundary-layer flow histories. (b) For weak 
incident shock strengths, the sublayer disturbance flow is assumed to be a small 
perturbation upon the incoming boundary layer; in the resulting linearized distur- 
bance equations, however, - all the physically important effects of streamwise 
pressure gradient, streamwise and vertical acceleration, and both laminar and 
turbulent disturbances stresses are retained; (c) For adiabatic flows themndisturbed 
and perturbatiton flow Mach numbers are both quite small within the shear disturbance 
sublayer; consequently, the density perturbations in the sublayer disturbance 
flow may be neglected while the corresponding modest compressibility effect on 
the Law of the Wall portion of the undisturbed profile is quite adequately treated 
by the Eckert reference temperature method wherein incompressible relations are 
used based on wall recovery temperature properties (this is equivalent in accurac 
to, but easier than, the use of Van Driest's compressible Law of the Wall profileT7). 
(d) The turbulent fluctuations and the small interactive disturbances are assumed 
uncorrelated in both the lower and middle d e c k s .  (e) The thinness of the inner 
deck allows the boundary-layer-type approximation of neglecting its lateral pressure 
gradient. 

The disturbance field is thus governed by the following continuity and momentum 
equations: 

wherep, and u 
where it should be noted that the kinematic eddy viscosity perturbation is 
being taken into account. The corresponding undisturbed turbulent boundary layer 
Law of the Wall profile Uo(y> is governed by 

are evaluated at the adiabatic wall recovery temeperature and 
0 WO 

a"- 
V r o ( y )  = const. = T = [uw + P E (y)] - 

W 0 0 wo *o d Y  

Van Driest-Cebeci eddy viscosity model with 

(10) 

-y+/A 2 3~ 
E = [.41v (1-e 11 - 
T 3Y 

(11) 
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which yields for non-separating flow disturbances that 

-y+/All 2 - 
dY E = [ . 4 1 y ( l - e  

*c (12) 

Here, A is the so-called Van Driest damping "constant;" we use the commonly accepted 
value A = 26 although it is understood that a larger value nay imDrove the experi- 
mental agreement in regions of shock-boundary layer interaction. 
h t o  (9) we thus have the disturbance momentum equation 

Substituting ( 1 3 )  

au 1 
[(uw + 2 E ) -1 -1 aP4 a 

uo ax dy (*w ) a x=- To aY 
uO 3"' + v l  - 

0 aY 
0 

(14) 

from which we hav een that inclusion of the eddy viscosity perturbation has 
exactly doubled th ,urbulent shear stress disturbance term. 

We solve these Equations subject to the wall boundary conditions Uo(0) = 
u (x,o) = v (x,o) - 0 plus an initial condition u (-a,y) - 0 requiring that all 
interactive disturbances vanish far upstream of the impinging shock. Furthermore, 
at some distance JSL sufficiently far from the wall, u' 
inviscid solution ui;lv along the bottom of the middle deck, this later being 
governed by 

must pass over to the 

T O  
auinv + __ uo 

'0 ax i n v  dy (15)  

with tisL defined as the height where the total shear disturbance (proportional 
to au/8y) of the inner solution vanishes to a desired accuracy. 

4. SOLUTION METHODOLOGY AND RESULTS 

The solution to the foregoing triple deck problem is achieved for small 
linearized disturbances ahead of, behind and below the nonlinear shock jump, 
which gives reasonably accurate predictions for all the properties of engineering 
interest when Mi 2 1.05. The resulting equations can be solved by a Fourier 
transform method to yield all the essential physics of the mixed transonic viscous 
interaction field for non-separating flows including the upstream influence, 
the lateral pressure gradient near the shock and the onset of incipient separation 
(see References for the details of this solution). Numerous detailed comparisons 
with experiment have shown that it gives a good account of all the important 
features of the interaction over a wide range of  Mach-Reynolds number conditions. 
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I 4.1) Fourier Transformation Method 

We only briefly outline here the steps involved, since full details can 
be found elsewhere. Following Fourier Transformation w.r.t.x., the resulting 
middle deck pressure problem from Eq. 3 is an ordinary differential equation 
in y that can be solved numerically quite efficiently for the input turbulent 
boundary layer profile Mo(y) of Section 3.2. In particular, for the upstream 
interactive pressure rise we find from the appropriate Fourier inversion process 
using the calculus of residues that 

x/n u p' z CONST. x Ap e 
W (16) 

where AP is the overall shock pressure jump while Ru is the charactertistic upstream ' distance given by 

n t n  

,/Me; - 1 I1 L Mel Io 
Bu '= + 0 

JMe: - 1 Me 

in terms of the profile-dependent integrals (evaluated by the aforementioned 
turbulent Law of the Wall/Law of the Wake model) 

w e f f  

(17a) 

The parameter yweff here is the effective inviscid wall shift given by the displace- 
ment thickness of the underlying inner deck. 

I The corresponding Fourier transformation of the inner deck problem of Section 
3.3, followed by the introduction of new inner deck variables and a y-scaling 
defined by Inger2, yields a set of ordinary differential equation boundary value 
problems in a "universal" form that can be solved and tabulated once and for 
all. An example of this is illustrated in Fig. 4 ,  which shows the resulting 
inner deck streamwise velocity profiles in terms of the eddy viscosity effect 
as expressed by the authors Interactive Turbulence Parameter2 

2 T = (.41) 
7 

Po w 

pow 

w o  
2 

(18) 

618 



The typical transonic Reynolds number and wake function-dependence of this parameter 
is illustrated in Figure 5 ,  where it is seen that it grows t o  large values with 
increasing Re6, as well as increasing with A .  

We further obtain the following result f o r  the deck's displacement thickness: 

where the eddy viscosity effect-function H(T) is given in Figure 6 .  The simultaneous 
solution of Eqs .  (17)-(19) for Ru and yweff implements the matching of thinner 
and middle decks. The resulting values of this inner deck height expressed as 
a fraction of the incoming undisturbed boundary layer thickness are plotted versus 
Reynolds number with as a parameter in Figure 7; also shown for comparison 
are the corresponding sonic height ratio values. It is clearly seen how rapidly 
yweff/6L decreases with increasing Reg, reaching exceedingly small values indeed, 
relative to the much more gradual decrease in ysonic/go. It is also interesting 
to note here, as one would expect on physical grounds, that while the inner deck 
thickness is hardly affected by A ,  the sonic height (which lies within the wake 
region) is significantly influenced and increases with the value of the Wake 
function. 

- 

- 

Finally, we note t h e  companion result for the upstream skin friction that 

where 

-00 

- 1/3 

s (T) 

and S(T) is another interactive-turbulence effect L.mction, also plotted in Figure 6 .  

Figure 6 is a central result of the present general turbulent shear-disturbance 
inner deck treatment; it gives a unified account of the inner interactive physics 
over the entire Reynolds number range from quasi-laminar behavior a t T  << l(1ower 
Reynolds numbers) to the opposite extreme of wall turbulence-dominated behavior 
at T >> 1 pertaining to asymptotic theory at very large Reynolds numbers where 
the inner deck thickness and its disturbance field become vanishingly small. 
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4.2) Predictive Results Showing the Role of the Turbulence Modeling Parameters 

A computer program has been constructed to carry out the foregoing solution 
method; it involves the middle-deck disturbance pressure solution coupled to 
the inner deck by means of the effective wall shift combined with an upstream 
influence solution subroutine (the corresponding local total interactive displacement 
thickness growth and skin friction are also obtained). This provides a very 
general fundamental description of the boundary layer in terms of three arbitrary 
parameters: preshock Mach number, boundary-layer displacement thickness Reynolds 
number, and the wake function %. 

Based on the aforementioned program, an extensive parametric study has been 
carried out to show the sensitivity of predicted interaction zone properties 
to the various key turbulent flow modeling Parameters. For example, in Figures 
8 ,  9 and 10 we show the influence of the Wake Function on the interactive pressure, 
displacement thickness and local skin friction distributions. These plots bring 
out clearly that this wake function effect has a very important influence on 
the interactive physics (for example, the interaction zone width, upstream influence 
and thickness all significantly increase with A )  and hence is an important element 
in the turbulent flow modeling. It is important to remember that this wake function 
effect is totally lost in the leading approximation of the asymptotic triple 
deck approach (which is based on the limiting value Hi1 = 1.0 pertaining to the 
infinite Reynolds number limit, wherein the wake component completely vanishes). 
We further note in this regard the significant corresponding effect on the skin 
friction levels in the interaction zone (Figure 10). 

Another interesting aspect of the turbulence modeling is the eddy viscosity 
perturbation effect in the inner deck: this is illustrated in Figure 11, where 
we show how the predicted upstream influence distance is altered by includin 
(or neglecting) this effect. At moderately high Reynolds numbers (Re6 5 10 1, 
the effect is seen to be quite large: neglect of the interactive disturbance 
to eT can consequently underpredict Ru by hundreds of percent. On the other 
hand, at very large Re where the interactive flow is essentially inviscid-dominated 
and influenced only by the outer wake region of the incoming boundary layer, 
the eddy viscosity perturbations have an altogether negligable effect. 
also brings out the fact that the present theory applies to a very wide range 
of practical Reynolds numbers. 

8 

Figure 11 

The predicted influence of the transonic Mach number and wake function on 
the non-dimensional upstream influence distance ratio Ru/Co at a fixed Reynolds 
number is presented in Figure 12; it is seen that this ratio noticably decreases 
with increasing Me while significantly increasing with the value of A .  
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Figure 2. Nondimensional turbulent boundary-layer 
velocity profiles for various shape 
factors (after NASA Rept. 772, 1943). 
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Figure 3. Incompressible shape factor versus 
Reynolds number with the wake function 
as parameter. 

Vertical Inner-Deck Scale Height 

Figure 4 .  Streamwise disturbance velocity profiles 
across inner deck for various values 
of interactive turbulence parameter. 
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Me = 1.20 

lo4 

lo3 

-- 

-- 

Figure 5. Variation of interactive turbulence parameter with 
Reynolds number for various wake function values. 

Figure 6. Turbulent interaction parameter effect on 
interactive displace thickness and skin friction 
functions. 
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Figure 7. Nondimensionalized inner deck thickness and sonic 
height variations with Reynolds number with wake 
function as parameter. 
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Figure 8. Wake function effect on interaction wall 
pressure distribution. 
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Figure 9. Wake function effect on displacement thickness 
distribution along interaction zone. 

Mel = 1.20 

Res = 10 5 

Figure 10. Wake function effect on interaction zone 
skin friction. 

626 



10 

1 

I I I I t I t 

Inner Deck 
Turbulent Stress Neglected 

Figure 11. Influence of inner deck eddy viscosity perturbations 
on upstream influence variation with Reynolds number. 
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Figure 12. Upstream influence versus wake function 
with Mach number as parameter. 
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